手机浏览器扫描二维码访问
1685年,沃利斯(wallis)出版了《代数》(deAlgebra),包含了牛顿二项式定理的最早描述。
它也使哈利奥特的卓越贡献为人所知。
二项式定理,是一个a加b的n次方的展开计算。
沃利斯对牛顿说:“你最近在研究什么?”
牛顿说:“二项式定理。”
沃利斯说:“巴斯卡三角,甚至古中国的杨辉三角而已,还有什么好研究?”
牛顿说:“没什么,仅仅是想前进一步。”
沃利斯笑说:“这些东西有用吗?”
牛顿笑着说:“我觉得有很多用,虽看朴素,但里面蕴藏着很多能量。”
沃利斯说:“比如说?”
牛顿说:“我在想开二次方可以计算,就是不断的将小数点后的数字,先写成5,大的让这个数变成4,小了让这个数变成6。
然后一直不断往后写,就可以慢慢的遍历出个无穷的样子。”
沃利斯说:“那又如何,不用二项式,我蒙着这样乘下去不就可以了?”
牛顿说:“开3次,还用这样的办法的话,就困难了,同时开3次以上的话,就更难了。”
沃利斯说:“继续说。”
牛顿说:“我想吧二项式中的n,从整数变成分数来计算。
也可以。”
沃利斯说:“如果是整数,可以有帕斯卡三角,或者是一种组合公式来表示系数。
分数的你该怎么办呢?”
牛顿说:“很容易,把那个组合公式中的n也变成对应的分数,甚至负数都可以。”
沃利斯抬头开始想牛顿说的这个组合公式的变化。
沃利斯开始去写1加x的负一次方的展开,写成了无穷的形式,等于1减去x的平方加x的二次方减x的三次,一直到无穷。
因为组合方程计算出来的是1和-1这两个数字的交替。
x的奇数次方的系数是负一,x的偶数次方的系数是正一。
疑惑的说:“等等,变成负数我还可以想象,变成分数这还用意义吗?”
牛顿说:“为什么没有意义,也没有人规定一定是整数呀,你脑子太死板,不知道其中的奥秘,这里面有很多有趣的数学意义。”
沃利斯也开始尝试的开始写二分之一次方的组合方程,然后带入到1加x的二分之一次方,也写出了看着复杂一些的无穷的级数。
沃利斯看着这个花里胡哨的东西,对牛顿说:“这个东西有作用吗?看着花哨。”
英俊非凡,潇洒多金的他为了帮表哥报仇,接近了他认为让表哥失去生命的她,于是开始了以折磨虐待她为乐的生活,甚至残忍地将他和她新生的女儿从她身边夺走,让她体会深入骨髓的痛苦美丽温柔优雅高贵的她,原本是个冰雪公主,不期望爱情,可是他闯进她的生活,她就无法自拔地陷进去了,只因为从他的身上她似乎看见了初恋那个男孩的影子。爱得义无反顾,可伤得体无完肤这段走入歧途的爱情,在真相揭开的那一天,能重新回到真爱的正途吗?...
不一样的武侠不一样的人物不再是九阳乾坤太极也不再是北冥凌波六脉这里是的是被人忽略遗忘的武功这是一个在武侠世界当官的故事...
一次战斗中遭遇伏击,为掩护队伍撤退身负重伤,正要饮弹自尽,被神秘人所救脱胎换骨,成为强者!回归都市,王者归来,一切故事就此展开!...
校园仙帝是温暖如冰精心创作的都市,八二小说网实时更新校园仙帝最新章节并且提供无弹窗阅读,书友所发表的校园仙帝评论,并不代表八二小说网赞同或者支持校园仙帝读者的观点。...
我们的故事将在上海码头一个普通工人的身上开始,而这个人也是我们故事的主角,汪伪政府,日本梅机关,中统,军统,共产党,以及美军方面多重身份,据传日后中国被称之为恶魔的军统局长戴笠南京坠机之死,都是此人所一手策划的,一个被各国,各党派视为最高机密,永不解密的名字。...
主角江南絮飞升仙界,开启了一段新的征程!新的环境,新的经历!仙魔两界的碰撞!已然衰落的家族等待重新的崛起!悬而未决的感情,也将在仙界获得最后的结果!...