手机浏览器扫描二维码访问
在17世纪,有一个赌徒德扎尔格向法国着名数学家帕斯卡挑战。
德扎尔格说:“甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?”
帕斯卡陷入沉思,显然这个要使用概率的知识。
不难得知,甲获胜的可能性大,乙获胜的可能性小。
帕斯卡对赌徒说:“甲输掉后两局的可能性只有二分之一乘以二分之一等于四分之一。”
德扎尔格说:“没错。”
帕斯卡说:“那甲赢得后两局或后两局中任意赢一局的概率为一减去四分之一,为四分之三。”
德扎尔格说:“你的意思是甲赢得可能性高,让甲拿100法郎吗?”
帕斯卡说:“当然不对了,因为乙获胜可能性虽然低,但也有获胜可能性。”
德扎尔格说:“那怎么办?”
帕斯卡说:“虽然你们不能赌了,但是有概率所导致的期望,按照这个期望来。
甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(12)*(12)=14,即乙有25%的期望获得100法郎奖金。”
德扎尔格一边听了,一边也开始心算,帕斯卡继续说:“可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75法郎,乙应分得奖金的的100x25%=25法郎。”
德扎尔格听了,觉得很有道理。
帕斯卡分布,负二项分布的正整数形式,描述第n次成功发生在第x次的概率,是统计学上一种离散概率分布,常用于描述生物群聚性,医学上用来描述传染性或非独立性疾病的分布和致病生物的分布。
满足以下条件的称为帕斯卡分布:
1.实验包含一系列独立的实验。
2.每个实验都有成功、失败两种结果。
3.成功的概率是恒定的。
4.实验持续到r次失败,r可以为任意正数。
成功发生一次的,是几何分布。
英俊非凡,潇洒多金的他为了帮表哥报仇,接近了他认为让表哥失去生命的她,于是开始了以折磨虐待她为乐的生活,甚至残忍地将他和她新生的女儿从她身边夺走,让她体会深入骨髓的痛苦美丽温柔优雅高贵的她,原本是个冰雪公主,不期望爱情,可是他闯进她的生活,她就无法自拔地陷进去了,只因为从他的身上她似乎看见了初恋那个男孩的影子。爱得义无反顾,可伤得体无完肤这段走入歧途的爱情,在真相揭开的那一天,能重新回到真爱的正途吗?...
不一样的武侠不一样的人物不再是九阳乾坤太极也不再是北冥凌波六脉这里是的是被人忽略遗忘的武功这是一个在武侠世界当官的故事...
一次战斗中遭遇伏击,为掩护队伍撤退身负重伤,正要饮弹自尽,被神秘人所救脱胎换骨,成为强者!回归都市,王者归来,一切故事就此展开!...
校园仙帝是温暖如冰精心创作的都市,八二小说网实时更新校园仙帝最新章节并且提供无弹窗阅读,书友所发表的校园仙帝评论,并不代表八二小说网赞同或者支持校园仙帝读者的观点。...
我们的故事将在上海码头一个普通工人的身上开始,而这个人也是我们故事的主角,汪伪政府,日本梅机关,中统,军统,共产党,以及美军方面多重身份,据传日后中国被称之为恶魔的军统局长戴笠南京坠机之死,都是此人所一手策划的,一个被各国,各党派视为最高机密,永不解密的名字。...
主角江南絮飞升仙界,开启了一段新的征程!新的环境,新的经历!仙魔两界的碰撞!已然衰落的家族等待重新的崛起!悬而未决的感情,也将在仙界获得最后的结果!...