手机浏览器扫描二维码访问
不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。
但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。
他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。
射影几何的主要奠基人是19世纪的彭赛列。
他是画法几何的创始人蒙日的学生。
蒙日带动了他的许多学生用综合法研究几何。
由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。
施泰纳说:“我研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是我引进的。
施陶特说:“我为了摆脱坐标系对度量概念的依赖,我通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度概念。
由于忽视了连续公理的必要性,我建立坐标系的做法还不完善,但却迈出了决定性的一步。”
另—方面,运用解析法来研究射影几何也有长足进展。
莫比乌斯说:“我创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。”
接着,普吕克说:“我引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。
我还引进了线坐标概念,于是从代数观点就自然得到了对偶原理,并得到了关于一般线素曲线的一些概念。”
在19世纪前半叶的几何研究中,综合法和解析法的争论异常激烈;有些数学家完全否定综合法,认为它没有前途,而一些几何学家,如沙勒,施图迪和施泰纳等,则坚持用综合法而排斥解析法。
还有一些人,如彭赛列,虽然承认综合法有其局限性,在研究过程中也难免借助于代数,但在着作中总是用综合法来论证。
他们的努力使综合射影几何形成一个优美的体系,而且用综合法也确实形象鲜明,有些问题论证
882年帕施说:“我建成第一个严格的射影几何演绎体系。”
射影几何学的发展和其他数学分支的发展有密切的关系,特别是“群”
的概念产生以后,也被引进了射影几何学,对这门几何学的研究起了促进作用。
克莱因说:“把各种几何和变换群相联系。”
克莱因说:“我在埃尔朗根纲领中提出了这个观点,并把几种经典几何看作射影几何的子几何,使这些几何之间的关系变得十分明朗。”
这个纲领产生了巨大影响。
但有些几何,如黎曼几何,不能纳入这个分类法。
后来嘉当等在拓广几何分类的方法中作出了新的贡献。
英俊非凡,潇洒多金的他为了帮表哥报仇,接近了他认为让表哥失去生命的她,于是开始了以折磨虐待她为乐的生活,甚至残忍地将他和她新生的女儿从她身边夺走,让她体会深入骨髓的痛苦美丽温柔优雅高贵的她,原本是个冰雪公主,不期望爱情,可是他闯进她的生活,她就无法自拔地陷进去了,只因为从他的身上她似乎看见了初恋那个男孩的影子。爱得义无反顾,可伤得体无完肤这段走入歧途的爱情,在真相揭开的那一天,能重新回到真爱的正途吗?...
不一样的武侠不一样的人物不再是九阳乾坤太极也不再是北冥凌波六脉这里是的是被人忽略遗忘的武功这是一个在武侠世界当官的故事...
一次战斗中遭遇伏击,为掩护队伍撤退身负重伤,正要饮弹自尽,被神秘人所救脱胎换骨,成为强者!回归都市,王者归来,一切故事就此展开!...
校园仙帝是温暖如冰精心创作的都市,八二小说网实时更新校园仙帝最新章节并且提供无弹窗阅读,书友所发表的校园仙帝评论,并不代表八二小说网赞同或者支持校园仙帝读者的观点。...
我们的故事将在上海码头一个普通工人的身上开始,而这个人也是我们故事的主角,汪伪政府,日本梅机关,中统,军统,共产党,以及美军方面多重身份,据传日后中国被称之为恶魔的军统局长戴笠南京坠机之死,都是此人所一手策划的,一个被各国,各党派视为最高机密,永不解密的名字。...
主角江南絮飞升仙界,开启了一段新的征程!新的环境,新的经历!仙魔两界的碰撞!已然衰落的家族等待重新的崛起!悬而未决的感情,也将在仙界获得最后的结果!...