手机浏览器扫描二维码访问
吴王阖闾在孙武和伍子胥的帮助下,带兵攻破楚国。
这是吴国极端冒险的一次行动,吴王阖闾被孙武非凡的军事才华所震惊。
而在阖闾眼里,孙武是一个一直喜欢那种算筹来回拨弄的人,似乎算筹从不离手。
阖闾一笑,既然这么爱计算,可以考考他的水平。
阖闾看了一个军队列队的变换,对孙武说:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”
意思是这个数字除以3余2,除以5余3,除以7余2,这个数等于多少。
孙武停滞了一下,飞快熟练的拨弄算筹,没一会儿回答:“23个。”
阖闾自己数了数士兵的个数,果然正确,吃惊的说:“你连看都不看,是怎么算出来的?”
孙武一边摆弄算筹,一边对阖闾说:“找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。”
阖闾看到孙武摆弄的算筹计算这些数字,一头雾水。
孙武继续说:“用15乘以2,用21乘以3,同理,用70乘以2,然后把三个乘积相加得到和233。”
阖闾看到孙武孩子熟练的拨弄着算筹,手速很快,阖闾都反应不过来。
孙武继续说道:“用233除以3,5,7三个数的最小公倍数105,得到余数23,即233除以105余数为23。
这个余数23就是符合条件的最小数。”
牛顿说过:一个例子比十个定理有效。
从这道题来看,立马就理解了剩余数学问题。
数学问题,很多看起来是棘手的问题,不用做剖析,直接就可以把它列出来,把这一切的本身就直接当做一个问题。
这样反而会快速的组件数学模型。
《孙子算经》的这个问题,就是一个直接列出来的问题,没有让这个不知其数去做一些更精细的模型来组建,而是直接提问,这样反而会找到这一类问题的归为一类。
然后遇到类似问题,就可以使用这类方法求解即可。
一名对平凡生活失望透顶,麻木活着的普通人,被轮回者战斗波及死亡,重生在漫威世界宇宙,茫然的王羽发现自己竟然可以穿梭于不同位面世界。从此王羽走在变态,不,是变强的道路上一去不返去的世界有超能英雄成龙历险记邪恶力量守望者超体超人钢铁之躯闪电侠第一季星球大战强殖装甲凯普生化危机七龙珠特...
炼天炼地炼自身,念生念死念永恒!吾心不亡,则吾不忘!吾欲使这天地从吾之念,顺吾之心!否之,从此无天少地!...
韩峰下载了一个天庭阅读器,结果发现里面的作者都是来自于一个叫做天庭的地方。韩峰发现自己要开始发达了,随便打赏一点,作者就感激涕零的送给韩峰一些天庭的小礼物。要是我写本小说发到天庭阅读器里面又会发生什么呢?这么多功德打赏,我该买什么呢!功法,仙器,还是灵丹妙药呢?天庭阅读器,书友交流群〔483540051〕...
一个门中天才偷练魔功,被人陷害,九转生死之后踏入魔道一途!从此以后,天大,地大,魔在我心,魔随我意,踏着漫天仙佛的尸体,成就无上魔道!亿万生灵,百万神魔,红颜枯骨…开启一段轮回生死之谜!...
前世候府嫡女,与同胞姐姐一同嫁入天家,本以为是贤良淑德,哪知竟在众目睽睽之下被人将自己与亲小叔捉奸在床暴病而亡的贵女含恨重生,落入寻常百姓之家。本以为会简单平安一生,哪知一个惊天的秘密让重生农家女的青娘再次卷入阴谋之中我命由我不由天,是归隐田园,是涅槃飞天,且看青娘力挽狂澜,追风踏月的人生。章鱼坑品有保障,请亲随时准备跳坑。本文曲折离奇,没有金手指,绝对有亲想不到的剧情和结果,不信,咱打个赌!...
穿越古代成农妇,扛着锄头种田去!可是种什么好呢?小王爷别跑!我把你种下去,来年结个王妃可好?...